CCP Community Advisory Committee Meeting

Cook Composites and Polymers Co. (CCP)- Saukville Facility

Saukville, Wisconsin

May 22, 2001

- Motivation for ending hazardous waste incineration at Saukville
 - Recycle, not destroy, 2MM lbs. of xylene per year
 - Eliminate the ignitablity hazard of CCP wastewater by separating and recovering xylene
 - Focus investment in progressive technologies
 - Reduce staff burden for CCP and WDNR
 - Save \$220,000 to \$280,000 in raw material purchases (\$400,000 minus cost of natural gas)
 - Eliminate stigma of hazardous waste incineration from CCP and the Village of Saukville

- Other waste management alternatives that were available to CCP
 - Transport waste off site for disposal
 - Pursue the Comparable Fuels Exclusion to the MACT standard for solvent waste incineration
 - Pursue zero discharge wastewater treatment of <u>hazardous</u> waste reaction water under Section 402 of the Clean Water Act.
 - Evaluate and implement physical or biological pretreatment technologies under Section 402 of the Clean Water Act.
 - Invest additional CCP resources in the existing incinerator for continued waste destruction under MACT

- The CCP project will reduce hazardous and heavy metals emissions
 - Metals emissions to be reduced between 50 to 99% for hazardous and heavy metals (Mercury, Arsenic, Cadmium, Chromium, Lead, Barium, Beryllium, etc)
 - Emission reduction due to ending solvent incineration
 - Emission rates calculated from metals concentration in waste from 1999 waste analysis for license renewal
 - Proposed emission reduction is on top of already low metals emissions - calculation table is available
 - Sodium, which is neither considered a hazardous nor a heavy metal under state of federal regulation, would be emitted in the current proposal - no standards will be exceeded

- CCP's activity and outlook regarding glycol recovery
 - CCP has been enthusiastically and actively testing the techniques for glycol recovery from reaction water
 - CCP R&D has made glycol loss reduction and recovery a priority for polyester process improvement
 - CCP Purchasing department has explored and identified external markets for reclaimed glycol to supplement internal CCP re-use
 - CCP cannot accept a deadline on this pollution prevention project - the project must be voluntary

- CCP's activity and outlook regarding solvent (xylene) recovery
 - Source reduction for xylene is the focus of the Saukville plant PACT team - with promising findings to date
 - Off-site solvent recycling will be available to CCP
 - CCP R&D has prioritized work on recovery and reuse of azeotropic solvent
 - CCP will conduct bench-scale and pilot-scale testing of thin film evaporator recovery of solvent with Pope Scientific (Saukville) beginning May 29, 2001
 - CCP cannot accept a deadline this additional pollution prevention project - the project must be voluntary

Clarification on key regulatory issues

- CCP does not need a POTW permit to qualify for the wastewater or zero-discharge exemptions, it is already subject to Section 402 the Clean Water Act.
- Waste generation guidance for "counting waste" from US EPA states that waste managed on site as wastewater, or in a totally enclosed facility does not count as generated waste
- After significant regulatory review, CCP maintains that its ECPP project meets the following four regulatory criteria
 - Wastewater exemption under CWA (40 CFR 264.1 (g) (6))
 - Totally enclosed treatment facility (40 CFR 264.1 (g) (5))
 - Generator treatment in tanks and containers (40 CFR 262.34)
 - · Waste minimization and pollution prevention exemption

Mass Balance Clarification

- CCP has provided relevant mass balance information on this project for nearly a year - the process is complex and perhaps not easily understood
- Simply described, CCP estimates that:
 - 2 million pounds of solvent would be recovered and would no longer be incinerated
 - 5 million pounds of ignitable reaction water would be rendered non-hazardous by the MPPE system by removing xylene
 - 5000 pounds or more of xylene would be recovered from reaction water
 - 300,000 to 400,000 pounds of glycols would be available for recovery, or would be incinerated as non-hazardous waste

Mass Balance Clarification

- CCP expanded its mass balance to include constituents that are present - but do not require regulation by WDNR - such as phenol, cyclic ethers, and sodium hydroxide.
- Additional mass balance information may be referenced on the updated block flow diagram and reaction water pie charts.

BLOCK FLOW DIAGRAM - MPPE with Non-Hazardous Wastewater Incineration (ZDWT System)

1650 galfday Reaction Water 5 MM Ibsly i Reaction Water

(Containing water (92-94%), glycols (6-9%), - 0.1% or less (or FPM) levels of xylene, phenol, cyclic ethers)

Raw Reaction Water Composition

Reaction Water After MPPE Treatment

Metals Emission Reduction From ECP Project

METALS EMISSION REDUCTION WITH ECP PROJECT

